ITM Blog Posts

The Blog Post category contains blog posts associated with ITM’s testing services, LabVIEW programming, Test & Measurement Hardware, Boiler Monitoring Systems, and iTestSystem applications.

ITM adds NI-9253 Compatibility to iTestSystem

This week we added another module to the iTestSystem compatibility list.  One of our iTestSystem users recently needed to collect data from thirty-two (32), 4 to 20 mA current sensors along with their vibration measurements.  National Instruments (NI) recently introduced a new C-Series current module, the NI-9253, that was a perfect fit for this application.

The NI-9253 module has eight (8) simultaneous sampled (50kHz max), +-20 mA, 24-bit input channels.  It has several diagnostic features to ensure your system is operating nominally at all times with open channel detection, power supply detection, and configurable thresholds. The NI-9253 has eight LEDs that indicate the status of each channel and the power supply so a user can easily determine the system’s status in the field.  The NI-9253 also features a number of programmable hardware filters (Butterworth and comb) to reduce signal noise.

in iTestSystem monitoring applications or with custom cRIO RT and FPGA control applications contact Mark Yeager or Chase Petzinger.

Strain Gauge Installations for Field Testing

shaft torque sensor

Image1: Shaft torque strain gauge installation example for field testing

Our engineers and technicians have epoxied, soldered and spot welded strain gauges for applications ranging from high temperature exhaust systems to miniature load cell measurements. Every application requires a unique understanding of the strain measurement requirements including installation environment.

If the strain gauge installation is to survive in the field you must plan for the conditions it will undergo. Three important variables that you should account for are temperature range, liquid exposure, and potential impact forces. These variables determine the type of strain gauge, epoxy, solder, wiring, coating, and impact/wear protection to use in the application. The table below shows which variables affect your installation choices.

  Gauge Epoxy Solder Wiring Coating Covering
Temperature  
Liquid Exposure      
Impact Forces      

Table1: Strain gauge installation variables

For more information about ITM’s strain gauging services contact Ryan Welker at email: ryan.welker@itestsystem.com or phone: 1.844.837.8797 x702

Roving Accelerometer Impact Tests with iTestSystem

3D Animator: Bike Frame Twist Vibration Mode at 26.2 Hz

In order to prevent or troubleshoot structural vibration problems, it is important to characterize a structure’s dynamic behavior using both experimental and Finite Element Analysis (FEA) technologies.  One method used to identify a structure’s vibration modes is to perform a roving accelerometer or roving hammer impact test.  In an impact test, engineers measure the response of a structure from an impulse delivered by a calibrated hammer using tri-axial accelerometers.

FRF View: Bike Frame Point 9 Coherence & Magnitude

Managing impact tests on large structures can be tedious and cost prohibitive, since they require collecting accelerometer responses at hundreds of locations to resolve the vibration motion.  Not only do test engineers need to keep track of the locations, they also need to keep track of the orientation that an accelerometer is positioned.

Our test engineers have found that the most efficient and cost effective solution for collecting impact data is to use a National Instruments (NI) cDAQ chassis with either NI-9234, NI-9232, NI-9231 or NI-9230 IEPE modules along with a calibrated impulse hammer and between 3 – 9 tri-axial accelerometers. To collect, manage, and visualize the modal data, our LabVIEW software engineers developed the Impact Test DAQ, FRF Viewer, and 3D Animator applications for our iTestSystem software platform. These applications incorporate tools that our test engineers need to manage and validate the quality of their modal data while in the field.

For more information about impact tests, modal analysis, our iTestSystem Impact Test applications, or to schedule a modal test contact Mark Yeager or Ryan Welker.

iTestSystem Download

FieldDAQ Sound & Vibration Module compatibility added to iTestSystem

The FieldDAQ™ FD-11634 sound and vibration input module from National Instruments (NI) can now be used with the latest version of iTestSystem for your data collection needs.  The FD-11634 is similar to the NI-9234, NI-9232, NI-9231, and NI-9230 cDAQ dynamic input modules and can be used with IEPE type sensors such as accelerometers and microphones.  Like the other FieldDAQ™ modules, this module is IP65/IP67 dust and water resistant with an operating temperature range of  -40 °C to 85 °C.  Our test engineers would use these modules for collecting vibration data on mining and construction equipment, vibration data on rotating machinery within manufacturing facilities and test cells, and acoustic data for measuring equipment noise emissions.  No matter your need, data logging with this equipment is sure to impress.

The FieldDAQ™ FD-11634 module has 8 simultaneous sampled, ±1V or ±10 V, 24-bit differential input channels with AC/DC coupling. It has a maximum sample rate of 102.4kS/s and features built in anti-aliasing filters that automatically adjust to the sampling rate.

For advice about using the FieldDAQ™ FD-11634 sound and vibration modules in iTestSystem monitoring applications or with custom cRIO RT and FPGA control applications contact Mark Yeager or Chase Petzinger.

Click Here to view a video showing one of our test engineer collecting data from a submerged FieldDAQ™ module with iTestSystem.

Click Here for more information about iTestSystem.

ITM @ VIATC 2019: Vibration Institute Annual Training Conference

VIATC 2019 Logo

Come see us at the VIATC 2019 Exhibit Hall in Booth 33!

Ryan Welker and Mark Yeager (CAT III Vibration Analysts) will be there to answer questions about our iTestSystem engineering measurement platform, our on-site testing services, LabVIEW consulting, and strain gauging services.

When: July 24 & 25th

Where: The VIATC 2019 conference and exhibit hall will take place at the Lexington Center, connected by a joint lobby to the Hyatt Regency Lexington.

Lexington Center
430 West Vine Street
Lexington, KY 40507

ITM Provides Global Solutions

ITM provides software development, structural and mechanical testing services, industrial monitoring, strain gauging, and data analysis solutions to clients on five continents.  ITM is located in Milford, OH, but our software and hardware packages are used throughout the world.  For the past 18 years ITM has traveled to where our specialized services are needed.  Whether it is performing tests at 16,500 ft in the Andes Mountains or on oil rigs in the Gulf Coast, installing strain gauges at extreme temperatures, or monitoring systems in the US or on the other side of the world, ITM understands the challenges of working in tough environments and will ensure your projects are successful whether home or abroad.

If you need tests performed or monitoring systems developed anywhere in the world, contact Ryan Welker (ryan.welker@itestsystem.com or 1.844.837.8797 x702).

iTestSystem Tip: Impact Hammer Setup



While iTestSystem is designed to collect data from specific sensor types like strain, voltage, current, and accel; custom signal types such as pressure, displacement, and force can also be configured by utilizing the Custom Scale functionality during the channel creation process.

For example, manufacturers often need to measure the amount of force required to install a component using a calibrated impact hammer.  Since iTestSystem does not have a specific channel type for impact hammers, we must create one using a similar channel type.  The channel type most similar to an impact hammer is the accelerometer channel.1

To configure a piezoelectric impact hammer in iTestSystem, first create an accelerometer channel.  An accelerometer channel will supply the impact hammer with IEPE constant current.  From the accelerometer configuration window, change the Units to “From Custom Scale”, set the sensitivity to 1, and set the sensitivity units to Volt/g.  Next, set the custom scale: scaled units to lbs, lbf, or N, Prescaled Units to g, and in the slope field, input the lbs/Volt value from the hammer’s calibration sheet.  After entering these settings, be sure to hit the Test button to verify your signal and save the settings after verification.

Notes

  1. Most impact hammers are piezoelectric and require IEPE constant current excitation.  Several iTestSystem compatible National Instruments (NI) cDAQ input modules (NI-9230, NI-9231, NI-9232, and NI-9234) can supply IEPE excitation for an impact hammer.  These modules are typically used for piezoelectric accelerometer inputs.

For a free trial of iTestSystem including the custom scale settings or to learn more about impact hammer measurements, contact chase.petzinger@itestsystem.com.

DOT Structural Health Monitoring



As engineering consultants, it’s the nature of our business for our work to take us out on the open road. It is for this reason that we are proud to support several state Departments of Transportation (DOT) with their structural testing and data acquisition needs.  We travel the very roads, bridges and other major infrastructure that they work so hard to design, build and maintain. 

Over the years, our field-testing experts have provided DOTs with the manpower needed to install and maintain the structural sensors for monitoring bridge and infrastructure usage/health, as well as the custom enclosures that house the precision data acquisition (DAQ) equipment used to process and trend data from the structural sensors.  We are looking for more opportunities to provide DOTs with the manpower and tools needed to keep tabs on our aging infrastructure.  

If you need help or advice on a structural monitoring project, contact Ryan Welker (ryan.welker@itestsystem.com or 1.844.837.8797 x702).  

We Build Rugged Data Acquisition Systems

 

Save time and money by leveraging ITM’s experience for your data acquisition system needs. Our engineers can assist you with choosing the best DAQ hardware and packaging for your testing conditions. Our iTestSystem software can complement your hardware to provide a complete testing solution. Contact ITM today to learn more!

Contact Info: Ryan Welker, 513.405.0181

 

Strain Gauge Shunt Equivalent Calculations in iTestSystem

When making strain measurements it is important to perform a shunt calibration both before and after the actual measurements are acquired.  Shunt calibrations ensure accurate strain measurements by adjusting the sensitivity or gain of the data acquisition equipment to compensate for leadwire resistance and other scaling errors.

iTestSystem takes advantage of the shunt calibration circuits included in the National Instruments (NI) cDAQ strain modules.  The NI-9235, NI-9236, and NI-9237 strain modules contain an internal shunt resistor that when switched on “shunts” across one leg of the strain circuit’s wheatstone bridge.  When active, the shunt resistor offsets the strain measurement by a constant strain which is calculated using the equivalent shunt calculation.  The equivalent strain/shunt value is dependent on the strain gauge configuration, gauge resistance, shunt resistance, gauge factor, and material properties.

In the latest version of iTestSystem, we added a built-in strain gauge shunt equivalent calculator that can be accessed from the strain configuration page.  This calculator has allowed us to speed up the calibration process and eliminate hand calculation errors.

For a free trial of iTestSystem and the equivalent shunt calculation tool, contact chase.petzinger@itestsystem.com.