Vibration and Strain Gauge Level Report Automation with iTestSystem

Our test engineers are often called upon to deploy unattended or “black box” data acquisition systems in the field.  These systems are deployed on machinery, vehicles, and industrial processes to constantly record strain and vibration data at sample rates between 100 and 100,000 Hz. That adds up to a lot of data to sift through.

In situations where we are trying to identify system operation outliers or damaging events, we utilize the Automated Analytics application in iTestSystem to limit the amount of data searches required. The Automated Analytics application allows users to analyze, build, and send sensor level reports only when specific vibration and strain limits are exceeded.  Instead of searching through data files, engineers can easily review the report and download relevant data files from deployed systems for further analysis.

This video demonstrates how to build and send vibration and strain reports using Automated Analytics and other iTestSystem tools and applications.

For more information about our iTestSystem or ITM’s testing services, contact Ryan Welker @ (844) 837-8797 x702.

Related Links

How to Install Weldable Strain Gauges

When it comes to measuring structural stresses and load, every application is unique, and sometimes that means using a different solution.  In some cases where strain gauges are applied, it can be advantageous or even necessary to use weldable strain gauges instead of chemical bonding the strain gauges to the specimen.

Since many epoxies used to chemically bond strain gauges require specific heat and pressure for curing, it can be difficult or even impossible to use this method on large or irregular structures.  Weldable strain gauges offer an advantage in this situation as they eliminate the need to clamp and cure any epoxies for bonding. In addition, weldable gauges can be installed in a variety of environments and weather conditions which offers additional advantages over traditionally bonded strain gauges. Although weldable strain gauges are applied differently, they function in much the same way as their bondable counterparts.

To properly install a weldable strain gauge, you will need:

Always remember to have the proper safety equipment on hand, such as eye protection and gloves, as well as any PPE required by your environment.

When installing a weldable strain gauge, you must first prep the area. Unlike bondable gauges, the area does not need to be polished to a fine degree.  Simply degrease the gauge area, sand down any paint, coatings or excess debris and ensuring the area is purely metallic and free of chemicals is enough.  A clean metal surface is important to the welding process.

After the part has been cleaned, you can position the gauge.  Most weldable gauges come marked so you can align the grid properly.  When the gauge is properly aligned, spot weld the gauge on either side of the gauge along the centerlines, to hold it firmly in position and prevent shifting as the gauge is welded further.  Once secure, the gauge should be welded all around the carrier surface, as illustrated below.


  1. Clean the area to be bonded (Remove all paints, coatings, residue and debris until the surface is smooth).
  2. Mark center-lines for the gauge location with scribe and straight edge.
  3. Place the gauge on the part, lining up the center-lines.
  4. Spot weld the gauge on each line, to secure it in place.
  5. Weld the entire perimeter of the gauge in the pattern shown above.

For more information about our strain gauging and testing services, contact Ryan Welker @ (844) 837-8797 x702.

Related Links

Strain Gauge Bridge Completion Modules

The most common strain gauges used to quantify the state of stress on a test specimen’s surface, are uniaxial and rosette gauges.  For accurate measurements of stress and strain, these uniaxial and rosette gauges are independently connected as a Wheatstone bridge in a 3-wire quarter-bridge or half-bridge arrangement.

Today, most high-end data acquisition equipment manufacturers provide signal conditioning options for collecting data from single strain gauges.  Signal conditioning for strain gauges usually includes circuitry for bridge excitation voltage, quarter and half bridge completion arrangements, and shunt calibration.

Sometimes you may need to view or collect data from a single strain gauge using a device that only has analog voltage inputs and no strain signal conditioning.  This was precisely the case when I was working with the HX711 load cell/strain amplifier.  The HX711 requires a full bridge input so I instrumented my test specimens as such.  If I needed to use a single strain gauge with the HX711, I would have had to use an external bridge completion circuit.

What are your options for measuring single strain gauges with a device that only has voltage inputs or full bridge inputs?

Option 1: Buy a commercial off the shelf bridge completion modules.

The list below gives the specifications for some available bridge completion modules.  I plan on adding more completion modules to this list for future reference, so send me any additional completion options.

Strain Gauge Completion Modules
Manufacturer NI VPG Campbell Scientific
Model # NI 9926, NI 9945, NI 9944 MR1-10C-129, MR1-350-130, MR1-120-133 4WFBS1K, 4WFBS350, 4WFBS120
Description 3-Wire Quarter Bridge Completion 3-Wire Quarter Bridge Completion 3-Wire Quarter Bridge Completion
Resistance 1000 Ω, 350 Ω, 120 Ω 1000 Ω, 350 Ω, 120 Ω 1000 Ω, 350 Ω, 120 Ω
Strain Gauge Connector Terminal Block Solder Tab Terminal Block
Device Connector RJ50 Solder Tab Pins and Lead Wire

Option 2: Build your own circuit.

If you are building a product or are in the strain business long term, building your own circuit may be a cost effective alternative to the potentially more expensive off the shelf bridge completion option.  I have built a few bridge completion circuits in the past.  Here is a list of things to keep in mind when designing a circuit.

  1. Use high precision, low resistance temperature coefficient resistors
  2. The voltage source used for bridge excitation should be from a stable source like a reference since the output of a Wheatstone bridge is inversely proportional to the excitation voltage Vout/Vex.
  3. Use remote sensing to compensate for errors in excitation voltage from long lead wires
  4. Amplification will increase measurement resolution and improve signal-to-noise ratio
  5. Filter data to remove external, high-frequency noise

For more information about bridge completion or our strain gauging services, contact Ryan Welker @ (844) 837-8797 x701.

Related Links

Strain Gauge Installations for Field Testing

iTestSystem Tip: Strain Gauge Rosette Analysis

Wireless Strain Measurements with iTestSystem, LabVIEW, and Arduino

Ohio University Asphalt Cracking Prediction System Project

iTestSystem Tip: Sensor Auto-zero Utility Update

Our iTestSystem customers who routinely acquire data with high channel counts and data from full-bridge transducers recently requested that we update the sensor auto-zero utility to improve test setup efficiency.   In the latest version of iTestSystem, we updated the sensor auto-zero utility to include all channels that use the From Custom Scale option.  This update enables users to quickly adjust selected channel offsets with only a few mouse clicks.

One of our test engineers recently used this feature to test and calibrate a new load cell design for measuring loads in a manufacturing process.  He was able to quickly calibrate and zero the strain gauges along with a calibrated load cell and a pressure transducer prior to testing and before each directional test. The offset values are included in the calibration data files for traceability.

Contact Information: For more information about this update or iTestSystem contact:

Chase Petzinger – Integrated Test & Measurement (ITM), LLC. Email: or Phone: 1.844.TestSys

Strain Gauge Installations for Field Testing

Image1: Shaft torque strain gauge installation example for field testing

Our engineers and technicians have epoxied, soldered and spot welded strain gauges for applications ranging from high temperature exhaust systems to miniature load cell measurements. Every application requires a unique understanding of the strain measurement requirements including installation environment.

If the strain gauge installation is to survive in the field you must plan for the conditions it will undergo. Three important variables that you should account for are temperature range, liquid exposure, and potential impact forces. These variables determine the type of strain gauge, epoxy, solder, wiring, coating, and impact/wear protection to use in the application. The table below shows which variables affect your installation choices.

  Gauge Epoxy Solder Wiring Coating Covering
Liquid Exposure      
Impact Forces      

Table1: Strain gauge installation variables

For more information about ITM’s strain gauging services contact Ryan Welker at email: or phone: 1.844.837.8797 x702

ITM Provides Global Solutions

ITM provides software development, structural and mechanical testing services, industrial monitoring, strain gauging, and data analysis solutions to clients on five continents.  ITM is located in Milford, OH, but our software and hardware packages are used throughout the world.  For the past 18 years ITM has traveled to where our specialized services are needed.  Whether it is performing tests at 16,500 ft in the Andes Mountains or on oil rigs in the Gulf Coast, installing strain gauges at extreme temperatures, or monitoring systems in the US or on the other side of the world, ITM understands the challenges of working in tough environments and will ensure your projects are successful whether home or abroad.

If you need tests performed or monitoring systems developed anywhere in the world, contact Ryan Welker ( or 1.844.837.8797 x702).

Strain Gauge Shunt Equivalent Calculations in iTestSystem

When making strain measurements it is important to perform a shunt calibration both before and after the actual measurements are acquired.  Shunt calibrations ensure accurate strain measurements by adjusting the sensitivity or gain of the data acquisition equipment to compensate for leadwire resistance and other scaling errors.

iTestSystem takes advantage of the shunt calibration circuits included in the National Instruments (NI) cDAQ strain modules.  The NI-9235, NI-9236, and NI-9237 strain modules contain an internal shunt resistor that when switched on “shunts” across one leg of the strain circuit’s wheatstone bridge.  When active, the shunt resistor offsets the strain measurement by a constant strain which is calculated using the equivalent shunt calculation.  The equivalent strain/shunt value is dependent on the strain gauge configuration, gauge resistance, shunt resistance, gauge factor, and material properties.

In the latest version of iTestSystem, we added a built-in strain gauge shunt equivalent calculator that can be accessed from the strain configuration page.  This calculator has allowed us to speed up the calibration process and eliminate hand calculation errors.

For a free trial of iTestSystem and the equivalent shunt calculation tool, contact

Silo Load Monitoring

Plant operators need to continuously measure bulk material levels/weight to make sure their processes are running safely, efficiently and without any bottlenecks. Measuring these levels allows operators to automate vessel filling/emptying logistics or verify that a process is using the right amount of material.

How do you measure bulk material levels/weights in silos and hoppers?

There are a variety of bulk material level/weight monitoring sensors in the market. These sensors include distance measuring devices like laser, ultrasonic, and radar; or weight measuring devices like load cells and strain gauges. Our engineers prefer to implement strain gauge based solutions because they are very accurate and do not require structural modification.

For these solutions, our engineers identify the silo/hopper load paths and our technicians install strain gauges at these locations. By calibrating the strain gauge sensors to load and summing the load data for all load paths, we can accurately measure the total weight of the bulk material.

A typical silo monitoring system consists of weatherproofed strain gauges for each silo leg and a National Instruments (NI) CompactRIO embedded controller for inputs, calibration, and outputs housed in a stainless steel enclosure.

For more information about silo monitoring, contact Ryan Welker @ 1.844.837.8797 x702.  To see how ITM’s structural load monitoring systems work watch this video.

video link: