Civil | Infrastructure

The Civil/Infrastructure category contains blogs related to civil engineering and infrastructure projects.

DOT Structural Health Monitoring



As engineering consultants, it’s the nature of our business for our work to take us out on the open road. It is for this reason that we are proud to support several state Departments of Transportation (DOT) with their structural testing and data acquisition needs.  We travel the very roads, bridges and other major infrastructure that they work so hard to design, build and maintain. 

Over the years, our field-testing experts have provided DOTs with the manpower needed to install and maintain the structural sensors for monitoring bridge and infrastructure usage/health, as well as the custom enclosures that house the precision data acquisition (DAQ) equipment used to process and trend data from the structural sensors.  We are looking for more opportunities to provide DOTs with the manpower and tools needed to keep tabs on our aging infrastructure.  

If you need help or advice on a structural monitoring project, contact Ryan Welker (ryan.welker@itestsystem.com or 1.844.837.8797 x702).  

Building a Modern User Interface in LabVIEW

When we develop LabVIEW™ applications for our customers, a common request is for a simple, resizable and intuitive user interface (UI) for data visualization.  In these cases, we use a tree control and a subpanel.  This type of UI functions like a tab control that automatically resizes.  The main benefit of using a subpanel is to make your code more modular.

Figure 1: Modern User Interface with a Tree and Sub Panel.

To illustrate the modularity that this type of UI creates, I made an example LabVIEW™ project.  The main VI shown above uses a tree control to switch between a VI containing a graph and a VI containing a table.  I used our multi-queue event architecture for VI information communication messaging.  The image below shows the main VI’s significant functions.

Figure 2: Main VI’s Block Diagram – Significant Functions

The main VI’s functions are listed below.

Functions

  1. Initialize queues and events and then generate initialize event.
  2. Initialize tree and add tree items.
  3. When a user selects an item in the tree, generate data and then send it to the subpanel VI.
  4. Receive SubPanel Ready event from a subpanel VI and then insert the VI into the subpanel.
  5. Destroy queues and unregister for events.

In this example the subpanel VIs are very simple.  They populate an indicator (table or graph) and then generate a SubPanel Ready Event.  The two (2) subpanel VIs and block diagrams are shown below.

Figure 3: SubPanel VIs: Graph.vi and Table.vi

Contact Information: For more information on this example or our LabVIEW development service contact:

Mark Yeager – Integrated Test & Measurement (ITM), LLC.  Email: mark.yeager@itestsystem.com or Phone: 1.844.TestSys

ITM Strain Gauging Services

Garrison Dam

Quantifying stress, strain and force within a structure using real world strain gauge measurements is commonly used to verify FEA models and estimate a component’s fatigue life.  Our engineers and technicians have planned and implemented challenging strain gauge installations for our customers around the globe.  Information from these strain gauge installations has allowed our customers to validate their designs and improve their product’s reliability.

For more information about these applications and our strain gauging services, contact Ryan Welker via email ryan.welker@itestsystem.com or phone: (844) 837-8797 x702