Pulp & Paper

The Pulp & Paper category contains Case studies and blogs related to pulp & paper engineering services.

Another Successful Condition Monitoring System Installation

Last week our team successfully and safely installed another Boiler Monitoring System (BMS).  This system, a Sootblower Fouling Detection (SFD) system, monitors structural and vibration sensors that quantify the boiler’s response to sootblower operations. The SFD system analyzes the boiler response data and outputs Key Performance Indicators (KPIs) such as fouling level, sootblower efficiency, and sootblower health to automated boiler cleaning systems.

This boiler uses over 50 sootblowers located at different elevations to clean soot build-up from boiler steam tubes.  Since the vibration measurement locations are relatively far apart, the SFD system requires a distributed monitoring system consisting of several junction  boxes that monitor and process data for groups of sensors.  One team of engineers mounted the vibration sensors to the sootblowers and confirmed communication back to a local junction box containing the National Instruments condition monitoring hardware.  The other team installed the junction box panels and terminated the sensor cables.

After all the sensor installations and terminations were completed, each sensor’s location and calibration were verified.  While the sensor verification was being completed, one engineer worked with the mill IT department and the controls engineer to establish remote connection to the system and confirm communication with the mill’s automated cleaning system.

After commissioning the system and returning to our home base, our engineers are now monitoring the system through a VPN connection and assisting boiler operators with optimizing their cleaning process.

For more information about our boiler condition monitoring systems, contact Ryan Welker via email at ryan.welker@iTestSystem.com or phone @ 1.844.837.8797 x702

Machine Failures Caused by Intermittent Damaging Events

Over the years we have been tasked with identifying the root cause of machine structural failures. In many cases, we can determine the failure mode through strain and vibration testing, order analysis, modal analysis, and operating deflection shape analysis.  What tests can you run when the damaging conditions are intermittent and not easily identified?

In these cases, we like to install a cellular networked temporary data acquisition (DAQ) system that can autonomously log vibration and strain data along with machine status data. We have deployed two types of DAQ systems to collect data remotely.  An interactive system that includes an industrial PC running our iTestSystem software and National Instruments (NI) Compact DAQ hardware and a headless system that utilizes NI Compact RIO hardware.  Our test engineers prefer using the interactive solution for troubleshooting because they can view real-time signal waveforms and collected data files, and then adjust the test parameters accordingly without having to reprogram the hardware.

Rugged Measurement System

Figure 1: Headless networked data acquisition system

When potentially damaging events are identified in the vibration and strain data collected by these systems, it is important to know the machine’s operating status. Collecting the machine status information is just as important as collecting the structural data.  Many machines transmit these operating variables and operating stages over their network/bus.  Recently we have recorded process data from Allen Bradley Control Logix PLCs via Ethernet/IP, mining machine data from a Siemens controller via proprietary TCP/IP protocol, boiler condition data from a DCS via Modbus TCP,  machine pressures from PI historian via the UFL connector (TCP), and vehicle speeds and pressure via CAN.  Fortunately, we were able to use and adapt LabVIEW communication protocol tools to build applications and addons that allow this network tag data to be collected along with structural data.

LabVIEW Modbus to Shared Variable Code

Figure 2: Modbus to Shared Variable Tool

After the data collection phase, our engineers perform statistical analysis on the sensor and status channels in all data files and aggregate the results into a database for searchability. To identify the root cause probabilities, you can process the channel statistics data using your favorite correlation algorithm or application.  The image below shows an example data set containing related sensor data that was processed using a LabVIEW correlation test tool.

LabVIEW Correlation VI

Figure 3: Correlation Test Example vi

Contact Information: For more information about our remote data acquisition service, our LabVIEW development service, or iTestSystem contact:

Mark Yeager – Integrated Test & Measurement (ITM), LLC.  Email: mark.yeager@itestsystem.com or Phone: 1.844.TestSys

Recent News:  Ohio University Asphalt Cracking Prediction System Project

Strain Gauge Installations for Field Testing

Image1: Shaft torque strain gauge installation example for field testing

Our engineers and technicians have epoxied, soldered and spot welded strain gauges for applications ranging from high temperature exhaust systems to miniature load cell measurements. Every application requires a unique understanding of the strain measurement requirements including installation environment.

If the strain gauge installation is to survive in the field you must plan for the conditions it will undergo. Three important variables that you should account for are temperature range, liquid exposure, and potential impact forces. These variables determine the type of strain gauge, epoxy, solder, wiring, coating, and impact/wear protection to use in the application. The table below shows which variables affect your installation choices.

 GaugeEpoxySolderWiringCoatingCovering
Temperature 
Liquid Exposure   
Impact Forces   

Table1: Strain gauge installation variables

For more information about ITM’s strain gauging services contact Ryan Welker at email: ryan.welker@itestsystem.com or phone: 1.844.837.8797 x702

Building a Modern User Interface in LabVIEW

When we develop LabVIEW™ applications for our customers, a common request is for a simple, resizable and intuitive user interface (UI) for data visualization.  In these cases, we use a tree control and a subpanel.  This type of UI functions like a tab control that automatically resizes.  The main benefit of using a subpanel is to make your code more modular.

Figure 1: Modern User Interface with a Tree and Sub Panel.

To illustrate the modularity that this type of UI creates, I made an example LabVIEW™ project.  The main VI shown above uses a tree control to switch between a VI containing a graph and a VI containing a table.  I used our multi-queue event architecture for VI information communication messaging.  The image below shows the main VI’s significant functions.

Figure 2: Main VI’s Block Diagram – Significant Functions

The main VI’s functions are listed below.

Functions

  1. Initialize queues and events and then generate initialize event.
  2. Initialize tree and add tree items.
  3. When a user selects an item in the tree, generate data and then send it to the subpanel VI.
  4. Receive SubPanel Ready event from a subpanel VI and then insert the VI into the subpanel.
  5. Destroy queues and unregister for events.

In this example the subpanel VIs are very simple.  They populate an indicator (table or graph) and then generate a SubPanel Ready Event.  The two (2) subpanel VIs and block diagrams are shown below.

Figure 3: SubPanel VIs: Graph.vi and Table.vi

Contact Information: For more information on this example or our LabVIEW development service contact:

Mark Yeager – Integrated Test & Measurement (ITM), LLC.  Email: mark.yeager@itestsystem.com or Phone: 1.844.TestSys

Boiler Monitoring Technologies at BLRBAC Spring 2019 Meeting

Integrated Test & Measurement (ITM) is presenting its patented Sootblower Fouling Detection (SFD) technology at the Spring 2019 Black Liquor Recovery Boiler Advisory Committee (BLRBAC) meeting in Atlanta, GA on Wednesday, April 10, 2019.

ITM’s SFD system effectively offers the following benefits to boiler operations:

  • Optimizes sootblowing to reduce boiler fouling
  • Reduces sootblower steam consumption
  • Detects sootblower mechanical faults
  • Identifies dangerous conditions around packing leaks

Find out more about ITM’s Sootblower Fouling Detection (SFD) system and other Boiler Monitoring Solutions at https://itestsystem.com/industrial-monitoring/

Conference details can be found at http://blrbac.org/meeting-registration

Have questions? Contact Tim Carlier @ Tim.Carlier@iTestSystem.com

Archiving CompactRIO Process Data to PI

The tool we most commonly use for real-time embedded process monitoring and control applications is the NI CompactRIO.  These controllers allow us to embed algorithms that acquire and analyze high speed process sensor data and then output derived key performance indicators (KPIs) to other control systems.  Most of the time, our customers also require us  to send the KPIs to a real-time data infrastructure like OSIsoft’s PI System so plant managers and engineers can use the data to find energy savings, monitor asset health, or optimize processes.

For our latest CompactRIO systems we have developed APIs that allow us to send or receive data directly to/from PI.  We utilize the PI Asset Framework and the UFL Connector to automatically generate PI tags from the device and update the process tag values either on value change or on a time basis.

These tools greatly simplify our CompactRIO to PI System communication process by eliminating intermediary data servers and automatically generating PI tags based on a CompactRIO system’s configuration.  If you are interested in using these APIs for PI or developing a CompactRIO system contact Mark Yeager or Chase Petzinger.

ITM’s Patented Technologies Prevent Boiler Tube Leaks

The US patent office has recently awarded patents to ITM for (2) two of the underlying boiler safety and process optimization technologies embedded within our CDS and SHOP systems.  These systems monitor boiler conditions and alert operators when boiler tube damaging events/conditions occur.

Clinker Detection System (CDS)US Patent 10060688B2

The Clinker Detection System (CDS) measures the relative weight, location, and frequency of clinkers that impact a boiler floor. This technology enables operators to shorten boiler outages, identify fouling problems, optimize soot blower operations and identify damaging impact events.

Superheater OverHeat Protection (SHOP)US Patent 9541282B2

The Superheater OverHeat Protection (SHOP) system helps mitigate the risk of superheater tube failure due to short-term overheat during boiler start-ups.    Catastrophic thin-lipped bursts  can occur in superheater steam generation tubes when steam flow is insufficient, when deposits restrict flow, or when tubes are blocked by water due to a rapid firing rate during boiler start-up.  SHOP assists operators in the management of boiler start-ups by enabling the detection of superheater tube clear events (TCE’s).

If you’re interested in learning more about these systems and other boiler/process monitoring solutions, feel free to contact Ryan Welker by e-mail at ryan.welker@itestsystem.com or phone at (844) 837-8797.

Putting a HALT to Hazardous Hopper Maintenance – Power Magazine

Check out my article “Putting a HALT to Hazardous Hopper Maintenance” in the May 2018 edition of Power Magazine.  This article describes a system for detecting dangerous plugging conditions inside ash hoppers.  Ash hoppers are used in the power industry to collect hot ash from utility boilers. – Mark Yeager

Follow the link below for the on-line version.

https://www.powermag.com/putting-a-halt-to-hazardous-hopper-maintenance

For more information about a Halt System or our other Boiler Monitoring Systems contact Ryan Welker @ (844) 837-8797 x702

 

Increase the IQ of Your Intelligent Sootblowing in Power Magazine

Check out the article “Increase the IQ of Your Intelligent Sootblowing” by my colleague Mark Yeager in the December edition of Power Magazine.  In this article, Mark describes ITM’s Sootblower Fouling Detection (SFD) technology which allows for targeted sootblowing, by pinpointing exactly when and where sootblowing is required in chemical recovery and coal-fired power boilers.

https://www.powermag.com/increase-the-iq-of-your-intelligent-sootblowing

Superheater Overheat Protection (SHOP) @ BLRBAC Spring 2017

BLRBAC 2017 DetailsITM’s president Tim Carlier (tim.carlier@iTestSystem.com) is presenting its Superheater Overheat Protection (SHOP) technology at the Spring 2017 Black Liquor Recovery Boiler Advisory Committee (BLRBAC) Meeting  in Atlanta, GA on April 12th.  SHOP helps boiler operators avoid short term overheat failures of recovery boiler superheater tubes.

ITM will also introduce new boiler and plant optimization technologies/systems that their partners have used to streamline processes.

Conference details can be found at http://www.blrbac.org/

Find out more about ITM’s Boiler Monitoring Solutions https://itestsystem.com/industrial-monitoring/