Posts

Vibration Data Integration Analysis

Simplify Acceleration Conversions with iTestSystem’s Integration Analysis Tool 

Like many features in iTestSystem, the Integration Analysis tool was created because customers requested it. After all, who doesn’t like features that make the math easier?

In this blog, a new series by ITM, we’ll share some details about Integration Analysis, one of the features within TestView Plus, the project based data viewing function within iTestSystem. 

For engineers who are gathering vibration data, it makes perfect sense to have a simple way to convert acceleration into units of velocity or units of displacement since those are the most common specs.

Enter the Integration Analysis function. Simply open TestView Plus, drop down the “Analysis” tab and select “Integration.” Once there, adjust the settings to either “Single Integration” for velocity or “Double Integration” for displacement. In a couple of additional clicks, you can also specify your desired units and adjust the high cutoff frequency to filter low frequency data. 

The next time you are gathering data using accelerometers, let iTestSystem simplify all those conversions with Integration Analysis.  

About iTestSystem 

iTestSystem is an engineering measurement software platform that enables test engineers to organize, acquire, view, and analyze data from machinery, processes, vehicles and other complex systems. iTestSystem was specifically designed for use with National Instruments (NI) cDAQ or FieldDAQ hardware for data collection and data logging.    

For more information about our iTestSystem or ITM’s testing services, contact Ryan Welker @ (844) 837-8797 x702. 

Accelerometers for Rotating Machinery Vibration Measurements

Choosing an accelerometer for rotating machinery vibration measurements can be a daunting task since there are so many options available. This blog outlines the characteristics you should consider when choosing a piezoelectric single axis accelerometer for general purpose vibration measurements and presents some accelerometers to consider.

Characteristics of a General Purpose Accelerometer

When measuring vibration on rotating equipment such as motors, pumps, and generators, the most common measurement location(s) are on the shaft bearing housing(s) at the shaft centerline. At this location, typical vibration levels perpendicular to the shaft are < 100 g and the frequency range of interest is < 5000 Hz.  A general purpose single axis piezoelectric accelerometer with either a 10 mV/g or 100 mV/g sensitivity fits this criteria.

Other characteristics to consider are size, mounting options, cable connections, grounding, and cost. Several mounting options are available. They include magnetic bases, adhesive bases and stud mounts. The mounting option you choose affects the frequency range of your accelerometer measurements. The table below shows typical frequency limits for accelerometer mounting methods.

Mount Type Typical Frequency Limit
Magnet 2,000 Hz
Adhesive 5,000 Hz
Stud 6,000 Hz

5 General Purpose Accelerometers

The table below shows some examples of stud mounted general purpose piezoelectric accelerometers. These accelerometers all have a female 10-32 coaxial / microdot connector.  It is important to note that this is not a complete list of accelerometers and there are many options available from each manufacturer. I would encourage you to go to the websites linked in the table and see what’s available.

 
Manufacturer PCB Dytran BRÜEL & KJÆR Endevco Kistler
Model # 353B03 3055D1 4533-B 256HX -10 8702B500-M1
Sensitivity 10 mV/g 10 mV/g 9.8 mV/g 10 mV/g 10 mV/g
Frequency Range (±5%) 1 to 7000 Hz (±5%) 1 to 5000 Hz (±10%) 0.2 – 12800 Hz (±10%) 1 to 10000 Hz (±5%) 1-10000 Hz
Temperature Range -65 to +250 °F -67 to +250 °F –67 to +257 °F -67˚F to +257˚F -67˚F to +257˚F
Height 0.88 in 0.64 in 0.54 in 0.55 in 0.67 in
Weight 0.38 oz 0.35 oz 0.3 oz 0.14 oz 0.32 oz
Housing Material Titanium Titanium Titanium Titanium Titanium
Electrical Connector 10-32 Coaxial (side) 10-32 Coaxial (side) 10–32 Coaxial (side) 10–32 Coaxial (top) 10–32 Coaxial (side)
Mounting Thread 10-32 Female 10-32 Female 10-32 Female 10-32 Female 10-32 Female

For more information about collecting vibration data, accelerometers, iTestSystem, or test equipment rental, contact Mark Yeager @ (844) 837-8797 x701.

How Do I Collect Vibration Data with iTestSystem and a cDAQ?

Our test engineers collect vibration data on rotating machinery using four basic tools.  We use a Laptop computer with iTestSystem software to stream accelerometer and rotational/speed pulse sensor data from a National Instruments cDAQ equipped with vibration and voltage input modules.  The video above shows how to collect vibration data using iTestSystem and a cDAQ.

Vibration Test Equipment

Vibration measurements are usually derived by analyzing data collected from IEPE accelerometers mounted to the rotating machinery structures and components of interest with magnetic bases or epoxy and a rotational/speed pulse sensor.  Typical rotational/speed pulse sensors are magnetic pickups excited by gear teeth and keyways or optical sensors triggered by reflective tape adhered to the rotating machinery.

The most important part of the data collection process is choosing a sample rate.  If  you choose a sample rate that is too low, the data you have collected is useless.  According to the Nyquist Theorem data must be sampled at a rate that is at least 2X the highest frequency you wish to record.  2X the highest frequency is a minimum number.  Most test engineers like to sample from 2.5x to 10x higher than the highest frequency they wish to collect.

Typical general vibration measurements are sampled at 2kHz.  However, vibration data collected from accelerometers and gear teeth pulses which is used for phase and speed measurements, and bearing fault detection, and torsional vibration determination must be collected at much higher sample rates like 50kHz.

Related Links

For more information about collecting vibration data, iTestSystem, data logging or test equipment rental, contact Ryan Welker @ (844) 837-8797 x702.