Civil | Infrastructure

The Civil/Infrastructure category contains blogs related to civil engineering and infrastructure projects.

ITM Co-op Helps Engineering Student Set Sights Even Higher 



ITM Co-op Helps Engineering Student Set Sights Even Higher 

Tyler House’s dream career began to come into sharper focus during his spring co-op at Integrated Test & Measurement.

After four months at the Milford, Ohio, firm the University of Cincinnati electrical engineering student headed into his summer feeling both excited by his work experience and inspired to emulate ITM CEO Tim Carlier one day by starting his own company.

“I know I want to do something I love,” said Tyler, who had just returned from a trip to Disney with his girlfriend to celebrate the end of the semester. “I’d like to start my own company someday. I’ve been poking at that idea. Definitely a big dream of mine is having that freedom and doing something that means a lot to me.”

Perhaps the only thing that equals Tyler’s love of engineering is his love of music. He and a few fellow graduates from Clermont Northeastern (CNE) high school started a band called Wishbone, which has started lining up local gigs to cover rock and blues tunes stretching back a half century.

Tyler’s two worlds collided on the last day of his co-op when a couple of engineers from ITM dropped into his band’s “first bonafide show.”

“It was so much fun watching their reaction,” said Tyler, who employs his electrical engineering skills to repair the band’s gear when things inevitably break. “I love that they came.”

Coincidentally, like Wishbone, ITM’s entire leadership team — the CEO, VP of Operations, Lead Programmer and Administrative Director — are all CNE graduates. For Tyler, seeing that level of success from the same small high school as him was only more of a confidence lift.

He loves the entrepreneurial and inventive culture at ITM, where staff members are constantly tackling new challenges. “It’s really just a great place to figure out what you are into,” he said.

Tyler found himself learning a ton about Fusion 360, a cloud-based 3D modeling program, while researching mechanical properties and simulating failure modes on a bolted joint. He said he spent about half his co-op in the office doing things like assembling Data Acquisition (DAQ) boxes and the other half on the road working on-site. Experiences included everything from climbing inside massive paper mills to helping gather data on equipment operating in remote locations all over the country.

“In talking with my friends who have had co-ops, it’s hard to get to work in a place where you feel like you can make a difference and actually help fix problems,” said Tyler. “I definitely felt that. I learned really fast about how to deal with mistakes and just general problem solving.”

Besides the on-the-job learning, he loved exploring new places, national parks and more with the ITM crew after hours. He’s hoping to pick up some work helping ITM with any projects through the summer, and he’s interested in returning during his next co-op rotation in Spring of 2023.

Meanwhile, he’ll keep poking at his dream of someday owning his own company.

“You just have to go out there and get it,” Tyler said. “If you are aggressive about it, you will fail a bunch. But you’ve got to be able to get up off the ground and just keep rolling with it.”

For more information about Co-op or employment opportunities at ITM, contact Josh Fishback via email at josh.fishback@itestsystem.com or phone at (844) 837-8797 x705.

Modern Tools Series: What’s In The Box?



Modern Tools Series: What’s In The Box? 

This box reveal may not be quite as dramatic as the ending of “Seven,” the ’95 serial killer thriller that blew moviegoers’ minds, but the ITM team is throwing open the latches nonetheless. 

In this case, our team is taking you on a quick tour of a recently deployed Rugged Data Acquisition System. These particular black boxes of tech are riding around on high-dollar fracking equipment to remotely monitor all sorts of triggering events. Our crew builds them on the regular, and the end result is that our clients can better understand what sorts of stress, strain and vibration is taking place both en-route to their site and once operations begin.  

ITM is known for building rugged measurement systems and data logging solutions that are deployed on everything from Class A trucks, to well frac trailers, to dam and bridge structures, oil pipelines, gensets, boilers and more.

So, without further ado, what’s in the box?  

We recommend a handful of essential components and elements if you are looking to build your own rugged measurement system:

  • An Industrial Embedded PC. We love the Nuvo-7000LP. Another favorite is the Advantech UNO-2484G-9S55. 
  • You’ll need industrial grade connectivity, and you can’t beat Peplink’s cellular router options. And remember to outfit that unit with an AT&T or Verizon plan and get that activated card installed. 
  • A remote desktop application is a must, and we usually turn to LogMeIn for our remote access and file management. This allows us to pull up any of our units no matter where they are in the world to check in on status or grab some data for our clients. 
  • Speaking of data, depending on your job, you’ll likely need lots of data storage capability. Our preference is a 2 terabyte USB drive, which gives us an almost unlimited amount of space. If needed, we can store about six months worth of data before hitting capacity.
  • Since our industrial PC is running Windows, we use iTestSystem, our proprietary engineering measurement software platform that enables test engineers to organize, acquire, view, and analyze data from machinery, processes, vehicles and other complex systems.
  • To complete the box, our industrial PC is connected to an NI c-DAQ outfitted with strain, vibration and voltage modules.
  • What about power you ask? In our fracking instance, we connected to an alternator which charges a bank of batteries in the RAC. 

So there you have it. That’s what’s in the box. Build your own, or get in touch with our team, and we’ll customize a system for your specific needs.  

We also install and service all of our equipment. So if something breaks in the field, we can get you back up and collecting data or even assist with data analysis.

For more information about our rugged data acquisition systems, on-site system deployment or data analysis services, contact Josh Fishback via email at josh.fishback@itestsystem.com or phone at (844) 837-8797 x705.

 

Endless Testing Options Through Finite Element Analysis (FEA) 



Design Validation Finite Element Analysis

Design Validation Finite Element Analysis (FEA) using strain gauge measurements.



Endless Testing Options Through Finite Element Analysis (FEA) 

Whether our customers need us to validate their Finite Element Analysis (FEA) models or perform both the physical testing and the FEA, our engineers are used to helping customers with complex testing and analysis of high-value equipment. 

As a recent example, our team is involved in a large-scale project to do engine testing for a client that requires ITM to do both the physical testing as well as the FEA simulations. This requires using a custom high-channel count telemetry system to transmit engine data to a receiver that is sampling at an extremely high rate. 

“Once you are able to bring in the test data and compare it to the simulated data, you are able to fine tune your FEA simulation to better reflect the real-world application,” said ITM engineer Ryan Matthews. “We can also simulate the test in software and predict how it is going to react to the test when we can actually measure such things as strain, stress and vibration.” 

Matthews points out that FEA technology also helps the team determine the precise best placement of strain gauge during physical testing. And depending on complexity, a single simulation can take a few seconds or months to run. 

For obvious reasons — mainly the cost of bringing high-value assets to failure — running repeated strain gauge tests on components simply isn’t feasible, but ITM’s in-house capabilities and close partnership with sister firm SixDOF opens up endless FEA simulation options to clients. 

“Sometimes you are only going to be able to test a structure or a part once before it fails,” says Matthews. “So it becomes crucial to do a limited number of physical tests then correlate that to your FEA. Then you can pretty much run unlimited simulations.” 

For more information about our testing, strain gauging, and FEA modeling services contact Ryan Welker via email at ryan.welker@itestsystem.com of phone @ (844) 837-8797.

Applying Modern Methods to Study Civil Structures



Concrete Science: ITM Applying Modern Methods to Study Civil Structures

ITM has spent the last two decades testing the limits of steel, aluminum, composites, and other materials. From the heights of space to the depths of underground mines, our team has improved the art of using strain gauges to measure stress on metal, machines and complex systems. As the Milford, Ohio, firm enters its third decade, ITM engineers have returned to the lab to demonstrate some of the methods to measure rebar reinforced concrete using strain gauge technologies.

Concrete literally holds together much of our modern world, yet, many of our civil structures built in the mid-20th century are crumbling. From bridges to buildings, concrete is cracking and failing at an alarming rate, yet few are applying modern engineering methods to measure and monitor this foundational material we all rely upon.

As part of recent experiments, ITM staffers crafted test materials into mini concrete beams to illustrate how the materials hold up under stress and, more importantly, what it takes to capture the data. In our lab we placed 4-inch square by 18-inch long concrete beams under several thousand pounds of load using a hydraulic press. Gauges were affixed not only on the outside of the beams but also embedded inside the beam along the rebar used to reinforce the concrete. We used a laptop running our iTestSystem Software, an NI cDAQ-9171 Chassis, and NI-9236 modules to capture data from the strain gauges installed on the concrete specimens.

The data captured as the beams were brought to failure revealed the superiority of certain sensor bonding materials and methods during the testing. Importantly, it also showed that the stress along the internal rebar and that of the gauges on the outside of the concrete beams remained in sync as evidenced by the graphs that reveal the stress data.

Our team will continue these studies to show various methods currently being used to measure stress & strain in concrete structures and concrete crack propagation, the importance of which is only reinforced by news of deadly building collapses and aging civil structures. Stay tuned for more blogs detailing our findings and best practices for using today’s technology to measure structural concrete cracking.

For more information on this work, our testing services or iTestSystem, contact: Ryan Welker – Integrated Test & Measurement (ITM), LLC – ryan.welker@itestsystem.com

Steaming ahead with SFD in Power and Recovery Boilers

Paper Mill Steam

ITM SFD technology helps energy producers generate power more efficiently by detecting energy sapping soot buildup in power and recovery boilers 

According to the U.S. Department of Energy, the pulp and paper industry is the 3rd largest consumer of energy in U.S. manufacturing. A great deal of that energy is expended to generate massive amounts of steam inside about 200 black liquor recovery boilers spread around North America. That steam then powers generators that produce electricity to operate the mills. 

Imagine the energy savings if enhancements inside those recovery boilers could conserve 5% of all that steam. Not only would this advance in boiler efficiency carry an enormous environmental impact — potentially trillions of BTUs — the value of that steam savings would equal more than a million dollars a year at every plant where it is adopted.  

Figures like these help explain why Tim Carlier has spent years refining the novel idea he calls the Sootblower Fouling Detection System or SFD. SFD is his patented technology for measuring fouling/slagging as well as sootblower performance and reliability in recovery, biomass and utility boilers.  

In a typical boiler, fuel is burned inside the furnace, creating hot gas which heats water in the steam-generating tubes. In the case where the fuel is biomass, the flue gas often contains a significant amount of carry-over, which collects on the boiler tubes causing buildup. This buildup, also known as fouling, decreases the efficiency of the heat being transferred to generate steam while also increasing the risk of plugging the boiler and taking it offline altogether. 

For decades, these industries have relied on sootblowers — long rotating lances that are inserted through the superheater and other steam-generating tubes during combustion — to blow off soot and dislodge the masses of ash deposits that form around steam-generating tubes. Rather than running sootblowing systems “blind,” the SFD System removes guesswork by pinpointing exactly when and where sootblowing is required.

Sootblower

The system relies on a series of sensors on the sootblowers as well as at key locations on the boiler system that allow it to measure the energy transfer to indicate how much buildup is present so that sootblowing is only applied when needed. The feedback mechanisms can inform the plant operator not just where to run sootblowers, but also if sootblowers are leaking steam or malfunctioning in other ways. 

“This technology could have a huge environmental effect,” says Carlier, president and founder of Integrated Test and Measurement, the Milford, Ohio, engineering service and software company. “You are getting that much more efficiency out of your boiler, so not only are you saving money because you are not wasting steam, but you are not having to burn as much fuel to generate as much electricity.” 

He estimates that recovery boilers at most pulp and paper mills generate between $20 million and $40 million a year in steam depending on their Maximum Continuous Rating (MCR), and roughly 10% of the steam goes toward soot blowing operations. Carlier estimates that SFD could enable operators to decrease their sootblowing between 25% and 50% leading to a savings between $500,000 and $2 million dollars a year.

In addition to the significant steam savings, SFD will also greatly enhance the reliability of sootblowing operations by answering crucial questions for operatorsWhat’s the condition of the sootblower motor and gearbox? Is the poppet valve stuck open, stuck closed, and leaking, or is it operating correctly? Is the track damaged? Is the sootblower lance bent? Is the sootblower stuck in the boiler? What condition is the sootblower packing? Are there any steam leaks on or near the sootblower? Keeping informed on these important questions ultimately helps avoid costly downtime and even schedule crucial maintenance. 

On its own, the removal of sootblowing guesswork will generate a quick return on investment, Carlier says. When all is said and done, power generation facilities can expect to see a return on investment from the SFD System in approximately six months to a year. 

For more information about Sootblower Fouling Detection Systems or ITM’s other industrial boiler monitoring solutions, contact Ryan Welker via email: ryan.welker@itestsystem.com or phone: (844) 837-8797 x 702

ITM Gathers Dam Spillway Data During Midair Strain Gauge Project 

Garrison Dam

Suspended in a harness 30 feet above a concrete spillway in central North Dakota, ITM engineer Ryan “RJ” Matthews instruments the gate of one of the world’s largest earthen dams with dozens of strain gauge sensors. 

Integrated Test & Measurement’s field service technicians and engineers have installed strain gauges on civil structures and machinery around the globe for decades, and this project represents one more example of rugged data acquisition. In this instance, the team rappelled from an overhead abutment on the Garrison Dam — a 2-mile-long structure along the Missouri River built by the Army Corp. of Engineers starting in 1947. 

Contracted by Cotech IRM Services, ITM was charged with collecting data to measure the strain on one of the 28 spillway gates which are designed to raise and close to allow water to pass from the reservoir during rare flood events. Just behind those gates is Lake Sakakawea, one of the largest man-made lakes in the United States. 

Garrison Dam Spillway

Despite the complex location, Matthews and co-worker Zach Strong were able to successfully instrument the spillway gate with 44 single-axis strain gauges and solder signal cables which lead back to a NICompactDAQ system connected to their laptop, allowing them to successfully gather streams of crucial data using iTestSystem while the gate was put through its paces.

The project is yet another example of ITM’s ability to combine the use of strain gauge sensors, a cDAQ system and the firm’s iTestSystem software to create a structural health monitoring system. In this instance, the project required only one-time testing, but ITM can also establish a permanent structural health monitoring system as well. iTestSystem is an engineering measurement software platform that enables test engineers to organize, acquire, view, and analyze data from machinery, processes, vehicles and other complex systems.  iTestSystem was specifically designed for use with National Instruments (NI) cDAQ hardware for data collection and data logging. 

For Matthews, it was his first experience installing strain gauges while strapped into a bosun’s chair and dangling in midair, but he points out that ITM’s strain gauge process is essentially the same whether their engineers are standing on a bridge or inside a railcar.  All that changes is the method of access and environment. 

His field notes reveal that each strain gauge on this job was wired in a quarter bridge configuration, which provides one individual measurement of strain (positive tension or negative compression) per location. All gauges were adhered to the gate using M-bond 200 epoxy.  A final report submitted to the customer contained detailed instrumentation and test notes and results reported in a series of stress/strain tables and stress graphs.

Contact ITM for your Strain Gauge Needs 

Installing strain gauges in the field for structural and fatigue measurements requires expertise and experience.  Whether you use our iTestSystem software to stream and analyze strain signals for static measurements and real-world fatigue data acquisition or contract our software engineers to build a real time strain monitoring system, we will make sure you acquire quality strain data. Contact our strain lab and technicians to install strain gauges on test specimens or to design, build, calibrate, and test strain-based load cells.

Strain Lab Contact Info: Ryan.Welker@iTestSystem.com, (844) 837-8797

 

Prevent Costly Mistakes on Industrial Monitoring Hardware Updates



Are you contemplating updates to your industrial monitoring hardware? Perhaps a COVID slowdown has given your team time to finally upgrade to that latest and greatest National Instruments controller.  

Before you make that leap, there’s one extremely important factor to consider, and that is the software running your equipment. If your code isn’t ready, there is far more to consider than a simple hardware swap, and your crew could be headed toward a serious loss in productivity and efficiency.  

The reality is that production engineers are routinely staring at industrial monitoring equipment that is nearing or reaching end-of-life, and they need to act to prevent unforeseen failures. The team at Integrated Test & Measurement can help with hardware upgrades, but we can also dive into your software to be sure your code is up to date and any customizations that have been made over the years are updated to assure your complex equipment is communicating the way it was designed to and all signals continue to report properly.  

Why is this holistic hardware/software approach recommended when it comes to upgrades? Consider the situation where a client upgrades a control module on a test cell only to find out that the new equipment is no longer compatible with the old software. It is akin to adding a new printer to your desktop computer without upgrading the drivers. Only in this instance, the fix is far more complex than a quick download. The result is that piece of equipment may now need to come offline for an extended time, and if you don’t have an in-house spare, your industrial monitoring is about to take a hit.  

ITM has seen an uptick in requests for assistance from clients who are running either outdated hardware, software or both. In some instances, partners may no longer have access to the person who customized their software. But that is no problem for ITM. Our LabVIEW experts are adept at not only understanding these complex software changes but they can clean up your code to simplify future upgrades, too. In other words, if your programming resources are no longer available, look to ITM for support with code enhancements, development and updates. 

One common migration for ITM’s industrial monitoring clients, for example, is moving from an older NI CompactRIO to a newer more suped up CompactRIO. A common mistake in this and other instances is underestimating the time it may take to update custom software, so rather than trying to do the work in house, let ITM speed up your process.  

Our experts can travel to your site, evaluate both your equipment and your software running it to develop and implement an upgrade plan that works for your team. Whether that means a slower measured approach or a quick turnaround on a tight deadline, ITM will develop a custom solution that meets your needs. 

Strain Gauge Installation – M-Bond AE-10 Epoxy

This video shows how to install a strain gauge on a curved surface using M-Bond AE-10 two part epoxy. Watch an ITM test technician walk through each step of the M-Bond AE-10 strain gauge installation procedure.

Railcar Structural Testing Case Study

Obvious signs of fatigue — cracks at the corners of doors — had begun to surface on an in-service Railcar. A railcar structural testing case study.

Quiet Please: ITM Tunes Into Importance of Measuring Sound Levels

Construction Site Noise Testing

Whether manufacturing vehicles, mining natural resources or operating machinery on a construction site, a single common factor can bring your operation and productivity to an absolute halt. 

That factor is noise. 

In a world where precision and performance rule, measuring and controlling sound levels can be crucial to the success of your product or project. The team at Integrated Test & Measurement (ITM) have developed a customized solution that not only measures and collects sound-level data, but will help your team identify the specific components causing all that noise. 

On-Site Sound Testing Capabilities 

ITM can assist with all types of sound testing on site including: 

  • Vehicle/Automotive Noise Vibration & Harshness (NVH) Testing  
  • Drive by Noise Testing  
  • Sound Level Testing  
  • Vehicle/Automotive Component Noise Testing  
  • Construction Site Sound/Noise & Vibration Level Monitoring  
  • Mine Sound/Noise & Vibration Level Monitoring  
  • ISO Noise Testing 
  • Data Logging

In each of these instances, their engineers will be packing a custom Sound Level Test Kit full of data acquisition hardware, microphones and more. The key to their equipment, however, is that each kit includes ITM’s proprietary iTestSystem software, an intuitive sound-level human machine interface (HMI) that allows for sound-level recording and reporting. 

Mark Yeager, ITM Lead Programmer, says building the capability within iTestSystem to measure microphone data now allows customers to look at a real-time display of sound-level measurements. 

Yeager says their crew can build out tests on site to do such things as measure pass-by noise, a process by which the team arranges mics inside a vehicle and along both sides of a 40-yard stretch then capture, monitor and analyze a vehicle’s sound and compare it to acceptable standards. By breaking apart the frequencies of components, they can even zero in on trouble spots such as a turbocharger on a car or a loud cooling fan on a piece of construction equipment. 

Measuring Dangerous Sound 

Yeager also points out the need to measure sound in places like construction sites or mines, where there may be concern over hearing loss for operators. According to the Centers for Disease Control, hearing loss can result from a single loud sound (like firecrackers) near your ear. Or, more often, hearing loss can result over time from damage caused by repeated exposures to loud sounds. The louder the sound, the shorter the amount of time it takes for hearing loss to occur. Sound is measured in decibels (dB). A whisper is about 30 dB, normal conversation is about 60 dB, and a motorcycle engine running is about 95 dB. The CDC advises that noise above 70 dB over a prolonged period of time may start to damage your hearing, and loud noise above 120 dB can cause immediate harm to your ears. 

Test-Ready Sound Level Kits 

If you have test engineers on-site and simply need the equipment to help you get to the bottom of your sound issues, ITM will ship their test-ready kit that includes a pair of pelican carrying cases packed with the following components: 

Whether your needs include on-site sound testing and analysis or you simply need the crucial equipment to measure sound and vibration levels yourself, ITM can help. 

ITM is a structural test & measurement engineering service and software company located in Milford, Ohio, that helps companies reduce costs and improve efficiencies in their product development, manufacturing, and production activities. ITM is a recognized NI Gold Alliance Partner that provides software development, structural and mechanical testing services, industrial monitoring, strain gauging, and data analysis solutions to clients around the globe.

For more information about sound and noise level testing or our sound level test system or other data collection solutions, contact Ryan Welker via email at ryan.welker@itestsystem.com or phone at (844) 837-8797 x702.